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ABSTRACT

Previously, we introduced a method of optimizing four primary geometric parameters of a bicycle’s
design to maximize its lateral handling qualities. Here we expand that method to optimize over all
of the geometric and inertial parameters in the linear Whipple-Carvallo bicycle model. To ensure
physically realizable bicycle designs we include 7 equality constraints, 21 inequality constraints,
and lower and upper bounds on each free optimization parameter. This improves over the prior
work by expanding the search space with many more parameters and the guarantee of physical
realizability. We present four bicycle designs discovered by the optimization procedure that have
optimal later handling qualities. The bicycles are similar in design to familiar bicycle designs but
are not generally self-stable and exhibit unusual characteristics such as large positive and negative
trail, large size relative to the rider, and minimal steering inertia. The method is a useful tool for
generating atypical bicycle designs that exhibit desired dynamical qualities and could be broadly
applied to other vehicle designs.
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1 INTRODUCTION

Physical design features of ground vehicles can affect their lateral handling qualities. Geometry,
mass, and mass distribution of the vehicle’s components as well as tire characteristics are primary
contributors to poor and good handling due to their important influence on the vehicle’s dynamics.
In past work, we have presented a theoretical and computational framework for assessing the
lateral task-independent handling qualities of simplified single track vehicle designs [2, 5]. In
subsequent work, we showed that minimizing our proposed handling quality metric (HQM) can
produce theoretically optimal handling designs when only four geometric parameters are explored
as the optimization variables [4]. The present work’s goal is to expand this optimization problem
to all of the geometry, mass, and inertial parameters present in the linear Whipple-Carvallo bicycle
model [3]. This broadens the search space considerably but we constrain it so that only realizable
optimal bicycle designs are discovered. To do so, we formulate a constrained optimization problem
and use derivative-free optimization to discover optimal, yet realizable, bicycle designs. We close
by discussing the characteristics of the discovered designs.

2 BICYCLE MODEL PARAMETERIZATION

Our problem formulation relies on a new bicycle model parameterization that reflects both a re-
formulation of and extension to the benchmark parameterization of the linear Whipple-Carvallo
bicycle model [3]. We call this the “principal parameterization” as opposed to the “benchmark



Figure 1. Depiction of the principal parameters of the Batavus Browser with rider “Jason”.
The solid black lines represent the essential bicycle geometry. The dotted black line repre-
sents the steer axis. The inertial properties of the five rigid bodies, front wheel (orange), rear
wheel (purple), rear frame (blue), front frame (green), and person (red) are shown with the
mass center and the extents of the centroidal principal radii of gyration of each rigid body as
colored solid straight lines and circles. The primary principal angles, αD,P,H , are defined as
the angle about the y axis from x to the maximum principal axes in the XZ plane.

parameterization” in [3]. This parameterization differs from the benchmark parameterization in
three ways. Firstly, the person and rear frame are treated as separate rigid bodies each with their
own inertial parameters. Secondly, we express the inertial parameters of each rigid body in terms
of central principal radii of gyration to decouple the mass from the inertia terms. Lastly, we intro-
duce two simple dimensional parameters that define the geometric extents of the person which are
used to constrain the location of the person’s body in the optimization problem. Table 1 provides
the parameters and the reference values which are derived from the measurements of a Batavus
Browser Bicycle and the rider “Jason” presented in [5]. This represents a typical bicycle and rider.
The principal parameterization can be transformed into the benchmark parameterization readily,
but not vice versa. Note that the benchmark parameter variables names are also used in the paper
for convenience and are defined in [3].

3 BOUNDS AND CONSTRAINTS

The optimal principal parameters are subject to a set of constraints designed to ensure that a phys-
ically realizable bicycle is obtained from the optimization procedure. These constraints are made
up of bounds on the free parameters and both equality and inequality constraints among the pa-
rameters. Below the basic constraint concepts presented and grouped by the associated rigid body
or collection thereof:

Total T The combination of the five rigid bodies.

• The likely physical extents of the rigid bodies must exist above the ground plane.

• Both bicycle and rider are symmetric about the rider’s sagittal plane.

• The total mass is below a reasonably human lift-able amount.
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Table 1. Full set of 47 principal parameters and their default values derived from the mea-
surements in [5] of the Batavus Browser bicycle and rider “Jason”. The A and B axes are the
maximal and minimal principal axes in the XZ plane, respectively.

Variable Value Units Description

c 0.069 m Trail
w 1.121 m Wheelbase
λ 0.400 rad Steer axis tilt
g 9.81 ms−2 Acceleration due to gravity
v 3.0, 5.0, 7.0, 9.0 ms−1 Forward speed
Rear Wheel [R]

mR 3.11 kg Mass
rR 0.341 m Radius
xR 0.000 m X mass center coordinate
yR 0.000 m Y mass center coordinate
zR -0.341 m Z mass center coordinate
kRaa 0.171 m Central principal radii of gyration about AR

kRbb 0.171 m Central principal radii of gyration about BR

kRyy 0.221 m Central principal radii of gyration about Y
Front Wheel [F]

mF 2.02 kg Mass
rF 0.344 m Radius
xF 1.121 m X mass center coordinate
yF 0.000 m Y mass center coordinate
zF -0.344 m Z mass center coordinate
kFaa 0.209 m Central principal radii of gyration about AF

kFbb 0.209 m Central principal radii of gyration about BF

kFyy 0.272 m Central principal radii of gyration about Y
Person [P]

lP 1.728 m Body length
wP 0.483 m Body width
mP 83.50 kg Mass
xP 0.316 m X mass center coordinate
yP 0.000 m Y mass center coordinate
zP -1.099 m Z mass center coordinate
kPaa 0.368 m Central principal radii of gyration about AP

kPbb 0.153 m Central principal radii of gyration about BP

kPyy 0.367 m Central principal radii of gyration about Y
αP 0.186 rad Angle about Y between X and AP

Front Frame [H]

mH 3.22 kg Mass
xH 0.867 m X mass center coordinate
yH 0.000 m Y mass center coordinate
zH -0.748 m Z mass center coordinate
kHaa 0.296 m Central principal radii of gyration about AH

kHbb 0.145 m Central principal radii of gyration about BH

kHyy 0.276 m Central principal radii of gyration about Y
αH 0.370 rad Angle about Y between X and AH

Rear Frame [D]

mD 9.86 kg Mass
xD 0.276 m X mass center coordinate
yD 0.000 m Y mass center coordinate
zD -0.538 m Z mass center coordinate
kDaa 0.286 m Central principal radii of gyration about AD

kDbb 0.221 m Central principal radii of gyration about BD

kDyy 0.365 m Central principal radii of gyration about Y
αD 1.172 rad Angle about Y between X and AD
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• The wheels cannot overlap.
• The bicycle cannot topple forward during hard braking or backward during hard ac-

celeration.
• The closed-loop path tracking controlled system [2] must be stable. This is required to

obtain a valid HQM value.

Person P A single rigid body represents the rider.

• Rider mass is that of a typical person.
• The rider’s joint angles are fixed in a nominal configuration typical of upright bicycling

and the resulting mass distribution is derived from standard body segment estimation
methods.
• The rider cannot penetrate the ground.

Frames H , D Front frame (handlebar + fork) and rear frame

• The rear frame is planar in nature and the front frame’s moments of inertia are consis-
tently dependent.
• The mass and inertia of the frames are positive and large enough to be constructed

from a steel space frame.

Wheels F , R Both front and rear wheels have identical constraints.

• Wheel radius and mass must be positive and be greater than a minimum value.
• Wheels are inertially wheel-like, i.e. symmetric about each plane and most of the mass

is at the rim.

These bounds, equality, and inequality constraints are presented mathematically in tables 2, 3, 4
respectively and explained in more detail in the following sections.

3.1 Person [P]

We assume that the person’s joint configurations are such that they are in a nominal configuration
for pedaling, i.e. an average normal everyday riding position on a typical bicycle. We retain the
same configuration as they were seated on the Batavus Browser bicycle. The person is assumed to
be symmetric about theXZ plane. We allow the rider to be rotated about the Y axis and positioned
anywhere within the plane of symmetry above the ground.

To prevent the rider from being positioned and oriented such that their body is penetrating the
ground we introduce two dimensions that define a cross whose apex is at the center of mass of the
person and the cross axes are parallel to the principal axes in the XZ plane. lP /2 is the distance
along the principal axis to the tip of the toes and wP /2 is the distance along the second principal
axes to the tip of the hands. The constraints c2, . . . , c5 are derived from these rules.

3.2 Front Frame [H]

The front frame is symmetric about the XZ plane so IHxy, IHyz = 0. We allow for any angular
orientation of the principal directions in the XZ plane but limit the angle to −π

2 ≤ αH ≤ π
2 . We

prevent the rear frame from penetrating the ground by limiting the inertial spread with respect to
its mass center, c13, but also set a minimum inertial spread to ensure a frame can span from the rear
wheel to the mass center of the rear frame, c8. The spread factor in c13 of 1.4 is based on the ratio
of geometrical spread of a typical bicycle frame and its radius of gyration. The front frame is not
planar due to the need for handlebars protruding in the Y direction so we only ensure consistent
moments of inertia with c1.
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Table 2. Parameter lower and upper bounds.

Lower Parameter Upper

−∞ ≤ w ≤ ∞
−∞ ≤ c ≤ ∞
−π/2 ≤ λ ≤ π/2
1.0kg ≤ mD ≤ ∞
−∞ ≤ xD ≤ ∞
−∞ ≤ zD ≤ 0.0
0.0 ≤ kDaa ≤ ∞
0.0 ≤ kDbb ≤ ∞
−π/2 ≤ αD ≤ π/2
−∞ ≤ xP ≤ ∞
−∞ ≤ zP ≤ 0.0
−π/2 ≤ αP ≤ π/2
0.25kg ≤ mH ≤ ∞
−∞ ≤ xH ≤ ∞
−∞ ≤ zH ≤ 0.0
0.0 ≤ kHaa ≤ ∞
0.0 ≤ kHbb ≤ ∞
0.0 ≤ kHyy ≤ ∞
−π/2 ≤ αH ≤ π/2
0.127m ≤ rR ≤ ∞
1.0kg ≤ mR ≤ ∞
0.127m ≤ rF ≤ ∞
1.0kg ≤ mF ≤ ∞

Table 3. Equality constraints.

Constraint Equation Description

g1 IDyy =
√
I2Dxx + I2Dzz Rear frame is planar.

g2 kRyy = rR Rear wheel is a ring
g3 kRaa = kRyy/2 Rear wheel is a ring
g4 kRbb = kRyy/2 Rear wheel is a ring
g5 kFyy = rF Front wheel is a ring
g6 kFaa = kFyy/2 Front wheel is a ring
g7 kFbb = kFyy/2 Front wheel is a ring
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Table 4. Inequality constraints.

Constraint Equation Description

c1

√
I2Hxx + I2Hzz ≥ IHyy Consistent moments of inertia.

c2 0 ≥ zP + lP /2 cosαP Person cannot penetrate ground.
c3 0 ≥ zP + wP /2 sinαP Person cannot penetrate ground.
c4 0 ≥ zP − lP /2 cosαP Person cannot penetrate ground.
c5 0 ≥ zP − wP /2 sinαP Person cannot penetrate ground.
c6 xT ≥ |zT |/4 Maximum acceleration of 1/4g.
c7 w − xT ≥ 3/4|zT | Maximum deceleration of 3/4g.
c8 2kHyy ≥

√
(xH − w)2 + (zH + rF )2 Minimal inertial spread.

c9 2kDyy ≥
√

(xD − 0)2 + (zD + rR)2 Minimal inertial spread.
c10 w ≥ rF + rR Non-overlapping wheels.
c11 25kg ≥ mD +mH +mR +mF Maximum bicycle mass.
c12 −zD ≥ 1.4kDyy Rear frame cannot penetrate ground.
c13 −zH ≥ 1.4kHyy Front frame cannot penetrate ground.
c14,...,21 0 ≥ s1, . . . , s8 Closed loop stability.

3.3 Rear Frame [D]

Several constraints are set for the rear frame. We constrain the rear frame to be planar, g1, and
symmetric with respect to the XZ plane. We prevent the rear frame from penetrating the ground
by limiting the inertial spread with respect to its mass center, c12, but also set a minimum inertial
spread to ensure a frame can span from the rear wheel to the mass center of the rear frame, c9. The
spread factor in c12 of 1.4 is based on the ratio of geometrical spread of a typical bicycle frame
and its radius of gyration. Several rear frame parameters are bounded. We require the rear frame
mass to be positive, the center of mass not penetrate the ground, and we allow for any angular
orientation of the principal directions in the XZ plane but limit the angle to −π

2 ≤ αD ≤ π
2 as

angles beyond that are redundant.

3.4 Front [F] and Rear [R] Wheels

We enforce the assumption that both wheels have moments of inertia of that of a simple ring,
g2 . . . g7 and that the mass and radius should be greater than a minimal size based on small pur-
chasable spoked wheel with tire.

3.5 Total Bike [T]

The trail and wheelbase can take on any real values. The steer axis tilt is limited to ±90 degrees.
We introduce a constraint c10 that prevents the wheels from physically overlapping and require that
the bicycle be lift-able by an average person, c11. Finally, we require that the bicycle not topple
forward during hard breaking or backward during hard acceleration with:

−3g

4
< acceleration <

g

4
. (1)

This translates to two constraints, c6, c7 that bound the total center of mass (xT , zT ) in a trian-
gle in the XZ plane. Lastly, we constrain the eight closed loop eigenvalues associated with the
controller in [2] to be stable, i.e. have negative real parts. These are expressed in constraints
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c14, . . . , c21. Closed-loop stability is required for the HQM to provide a meaningful result, see [2]
for an explanation.

4 OPTIMIZATION

The above constraints leave 23 of the 47 parameters free for optimizing which we collect in the
vector p ∈ R23 and define as:

p = [w c λ mD xD zD kDaa kDbb αD xP zP αP

mH xH zH kHaa kHbb kHyy αH rR mR rF mF ]
(2)

Our objective in the optimization is to minimize the peak HQM value subject to the bounds,
pL,pU , and the constraints g(p), c(p) . Given a set of bicycle model parameter values we gen-
erate a bandwidth limited human-like controller using the methods in [5]. Once the closed-loop
stable controller is constructed, the HQM can be computed as per the definition in [2] and the
scaler peak value returned as the objective function J . This problem is presented as a non-linear
programming problem in the following equation.

minimize
p

J(p) = max(HQM(p))

subject to
g(p) ≤ 0

c(p) = 0

pL ≤ p ≤ pU

(3)

We make use of the derivative-free optimizer CMA-ES [1] to find solutions to this problem. The
optimization supports parameter bounds and equality constraints but does not support inequality
constraints. To get around this limitation we move the inequality constraints into the objective
function and penalize the objective if the constraints are violated with the following rules:

J(p) =


max(HQM(p)) if all(g(p)) ≤ 0

30 + ||g+(p)||/10 if any(g(p)) > 0 and ||g+(p)|| < 30

||g+(p)|| if any(g(p)) > 0 and ||g+(p)|| ≥ 30

(4)

where ||g+|| is the norm of the vector of positive elements of g and any, all are “any elements of”
and “all elements of”, respectively.

This creates a discontinuous objective function but in practice the CMA-ES algorithm is able to
move into the parameter space where all the constraints are satisfied and find a local minima.
For our purposes, this sufficiently finds parameter values that produce optimally handling bicycle
designs.

5 RESULTS

We discover four bicycles for different design speeds (3, 5, 7, and 9 ms−1) that have an optimally
low HQM, see Table 5, and satisfy all constraints and parameter bounds. The optimal parameter
values for these four bicycles are presented in Table 6. We believe these bicycles to be reasonably
physically realizable. The pictorial representation of the bicycles are presented in Figure 2.

The bicycle optimized for 3 ms−1 is about three times larger than the reference bicycle. The
wheelbase is about 3 m and it has a relatively large positive trail (0.7 m). The person is rearward
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Table 5. Peak HQM values for the reference bicycle and the optimal bicycles at each design
speed.

Speed [m/s] Reference Peak HQM Optimal Peak HQM Percent Improvement

3 13.075 2.012 85%
5 4.521 0.012 100%
7 3.043 0.022 99%
9 2.338 0.839 64%

Table 6. Optimal principal parameter values for each design speed. Values with an asterisk
are at a parameter bound.

v 3 m s−1 5 m s−1 7 m s−1 9 m s−1

c 0.688 −0.005 0.001 −0.484
w 2.866 0.847 1.157 5.557
λ −0.213 0.271 −0.028 0.239

mD 3.22 11.53 10.32 7.02
xD 0.958 0.287 0.427 1.020
zD −2.605 −2.719 −2.976 −4.065
αD 0.663 0.915 1.123 1.077
kDaa 1.449 1.218 1.324 0.861
kDbb 0.724 1.387 1.290 2.014
kDyy 1.471 1.559 1.555 2.031

mH 0.25* 0.25* 0.49 3.54
xH 2.356 0.532 1.145 5.615
zH −1.298 −0.781 −1.340 −1.776
αH 0.572 −1.265 1.571 0.238
kHaa 0.186 0.0491 0.000* 2.846
kHbb 1.259 1.145 2.006 0.168
kHyy 0.636 0.383 0.818 0.669

mF 1.62 4.40 2.64 5.51
rF 0.710 0.252 0.127* 2.063
kFaa 0.355 0.126 0.064 1.031
kFyy 0.710 0.252 0.127 2.063

xP 0.765 0.276 0.526 1.079
zP −3.194 −0.453 −0.586 −2.662
αP −0.661 1.150 −0.836 1.558

mR 12.63 8.36 6.31 2.25
rR 0.958 0.506 0.146 3.027
kRaa 0.479 0.253 0.073 1.514
kRyy 0.958 0.506 0.146 3.027

8



Figure 2. Depictions of the bicycle geometry and geometric representations of the inertial
quantities for the reference bicycle and four optimal solutions at 3, 5, 7, and 9 ms−1. Five
rigid bodies are shown for each bicycle: front wheel (orange), rear wheel (purple), rear frame
(blue), front frame (green), and person (red). The solid black lines represent the essential
bicycle geometry. The dashed black line represents the steer axis. The dashed colored straight
lines and circles represent the extents of the centroidal radii of gyration of each rigid body
and the red diamond shows the physical extents of the person’s length lp and width wp.
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on the bike and over 3 m above the ground. The mass of the front frame is the minimum possible
value and the mass of the rear frame is also small.

The bicycle optimized for 5 ms−1 has a similar geometric scale as the reference bicycle except that
the front wheel is smaller and the rear wheel is larger. The person is located low to the ground and
tipped back, like one might see on a recumbent bicycle. This significantly increases the vehicle’s
yaw moment of inertia. The trail is minimal, but surprisingly slightly negative (5 mm). The steer
axis tilt is slightly shallower than the reference bicycle. The mass of the rear frame is similar to
the reference bicycle but the front frame is at the bound and much lower. The minor principal axis
of the front frame is almost aligned with the steer axis.

The bicycle optimized for 7 ms−1 is one of the three that is geometrically smaller than the refer-
ence bicycle. The wheelbase is slightly larger but the wheels are approximately half the diameter.
The rider is low to the ground and tipped forward. There is effectively no trail, the steer axis is
vertical, and the (very) minimal principal axis is aligned with the steer axis making the steering
effectively inertia-less. The roll moment of inertia is larger than the reference bicycle.

The bicycle optimized for 9 ms−1 is much larger than the reference bicycle: wheelbase and rear
wheel diameter of 6 m, front wheel diameter of 4 m. The trail is large and negative, surely making
the bicycle open-loop unstable. The person is in a recumbent position and very rearward. The mass
centers of the person, front and rear frames are very close to the respective wheel mass centers.
The minor principal axis of the front frame is aligned with the steer axis, reducing the steer inertia.
The masses of the two frames do not seem to be sufficient for such a large steel space frame.

The parameters of the bicycles can also be distilled into open loop eigenvalues for a clearer picture
of the dynamics, shown in Figure 3. The 3 and 9 ms−1 designs have a similar eigenvalue pattern as
does the 5 and 7 ms−1 designs. The 7 ms−1 design is self-stable at speeds greater than 1.2 ms−1

but the other three designs are not self-stable at any travel speed from 0m s−1 to 10m s−1. Both
the 5 and 7 ms−1 designs have a weave mode that increases in frequency rapidly with speed. The
weave frequency of the 3 ms−1 design is higher than the reference design and present at all speeds.

6 DISCUSSION AND CONCLUSION

We have demonstrated the ability to find optimal parameter values of the linear Whipple-Carvallo
bicycle model under constraints that enforce a physically realizable bicycle with an objective of
improving lateral handling qualities. We showcase four optimal bicycle designs for a range of
target travel speeds. The resulting bicycles are similar to the familiar and popular bicycle design
but have some oddities: very large size relative to the person, large negative trail, large positive
trail, minimal steer inertia, recumbent rider orientation, and both very low and high rider mass
center locations. Three of the four bicycles are not open-loop self stable for any speed up to
10 ms−1 and the weave model frequencies are significantly larger than the reference bicycle but
all bicycles are controllable and have a minimal HQM as defined in [2].

The bicycles are reasonably physically realizable but some additional constraints could be intro-
duced to further improve this. In the 5 ms−1 design the person’s body overlaps the wheels, which
would be almost impossible to realize. A constraint that ensures the torso cannot occupy the same
space as the wheels would solve this. The masses of the front and rear frames are low with re-
spect to the geometrical spread a steel space frame would have to occupy. The frames also need
to be able to span the space between the respective wheel, mass center of the frame, and the steer
axis and for the rear frame span to the rider’s support locations. We currently only explicitly deal
with spanning the space between the mass center of the frame and the respective wheel. Another
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Figure 3. Real (solid) and imaginary (dashed) parts of the open-loop eigenvalues plotted
versus travel speed. The vertical dashed black line indicates the design speed.
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more restricting approach would be to specify a generic geometric structure for the front and rear
frames. If done, maximal stress and deflections of the frames under load could also be minimized.

Each optimized solution requires approximately 12 hours of computation time on a high-end con-
sumer desktop computer running the optimization procedure sequentially. The number of iter-
ations are typically in the hundreds of thousands for convergence. There are many avenues for
speeding this up that could likely result in solutions in one or two hours on the same computer
hardware but this is still slow to be particularly convenient to utilize in the process of designing a
bicycle. Furthermore, the time required to translate the resulting parameters into an actual bicycle
design complete with structural details is extremely time consuming. Nevertheless, the method
shows promise for optimizing an entire vehicle for optimal dynamics. This method can be applied
to a whole host of human operated vehicles opening up many new designs, but as with any opti-
mization it only captures a very small set of the variables that a designer has to take into account
for a vehicle.

7 REPRODUCIBILITY

All of the source code, data, and documents needed to reproduce the presented results and this
paper can be found at the repository hosted at https://github.com/moorepants/BMD2019.
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