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Dynamics (cont.) Controller Design (cont.)

We consider a new device, a so called bisteercycle, that 1s both a bicycle and
a Segway, and everything in between; we anticipate that the bisteercycle has
the advantage of:
- a Segway: with good balancing and controllability of orientation
at zero speed.
- a bicycle: taking little space and little control authority at higher
speeds

The bisteercycle 1s designed to have
steering and drive inputs to both wheels.
Our goal 1s to develop a controller
architecture that can consider a bicycle
and a Segway with a single controller, able

to vary continuously between, for example:

) a co-steering (front and rear wheels steer together) bicycle

) a counter-steering (front and rear wheels steer oppositely) bicycle
.) abicycle doing a track stand

) abicycle moving forwards at arbitrarily small speeds

) abicycle spinning in place

Dynamics

Overview

Our nonlinear simulation of a bisteercycle has vertical steering axes,
infinitessimal wheels, and no trail. The model has a 6-dimensional
configuration space:

- Location and heading of the rear wheel (3)

- Steer angles (2)

- Lean angle (3)

As a single-track vehicle, the bisteercycle has 4 velocity DOF. As a Segway,
a velocity DOF 1s added to the front wheel (here, the drive motors are
independent); 1n this configuration, the equations of motion (EOM) are
singular. The hybrid nature of the EOM poses an ongoing challenge for the
design of a continuously-stable, closed-loop controller. Our work explores
the stability of a controller, designed for a single-track vehicle, that can
operate with both bicycle and Segway dynamics.

The EOMSs use a minimal coordinate set,
including the velocity of the rear wheel
and front and rear steer angles, as well as
the steer angle rates and drive forces as
control mnputs. Non-cyclic coordinates
are solved for through integration.
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For certain sinusoidal inputs, the system
exhibits quasi-periodic behavior. When
the wheels are parallel, the instantaneous
center of rotation 1s generally infinite
(straight line motion).
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Trajectory AMB

Singularity arises from motion when

both wheels are at 90°, perpendicular to
the frame.
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3D Rigid-Body Dynamics

The rigid frame of the bisteercycle has mass and 1nertia, defined by a
symmetric tensor

I = I11b1by + (111 + I33)baba + I33bsbs

The equations of motion are found through:
1.) an angular momentum balance about the axis perpendicular to
the ground plane, through the instantaneous center of rotation
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2.) an angular momentum balance about the axis through the
points of contact of both wheels (denoted by R and F).
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2D Rigid-Body Dynamics

The equations of motion are found through an angular momentum balance
about the mstantaneous center of rotation.

Z M/ =rg o x m'ago + Isstk

Controller Design

The bisteercycle uses a linear quadratic regulator at multiple equilibria
using gain scheduling (gsLQR). For zero-input equilibria, we look for
circular orbits of the bisteercycle through root solving. Circular orbits can be
characterized by constant lean and steer angles and speed, with 0 lean rate.

assoclated gains are
tabulated and

interpolated for a large ’
subset of the state space.
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We use LQR to find I f(x*) =0
optimal gain matrices 2 A= (f+%a)| B = g0 uss
K fOI’ Step 4 A table Of 3. Repeat step 2 to linearize about every equilibrium point

4. For each A and B matrix, find the desired gain matrix K that ensures that A — BK 1is

Hurwitz (real part of all eigenvalues are negative)

5. Multi-dimensional interpolation between each K matrix

cu=—K(x — x%)

Results and Conclusion
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Simulation shows that counter-steering helps circular motion, while co-
steering helps low speed stability.
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