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ABSTRACT 

Detailed Energy Flow Method is proposed in order to discuss the mechanism of Wobble and 
Weave modes. First, the concept of the energy flow method is described. Before discussing 
the detailed method, it is shown that the yaw angle system is the main freedom for the weave 
mode. Next, detailed analysis methods are discussed, taking the stability change as the caster 
angle is increased as an example. The energy flow method proposed here demonstrates that the 
cause of the change in straight running stability can be understood in greater detail. 
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1 INTRODUCTION 

In 1971, Sharp[1] published an analysis of straight running stability of motorcycles. 

The research on the maneuverability stability of the motorcycle is making great progress with 

this work. It is clarified that the basic features of a two-wheeled vehicle can be expressed, con-

sidering four degrees of freedom with lateral velocity, yaw rate, roll angle and steering angle as 

dynamic variables. 

It has been clarified that there are 3 types of unstable modes when traveling straight ahead. 

Tease are well known cap size mode, wobble mode and weave mode. The motorcycle is unsta-

ble at the high speed range, the weave mode and the wobble mode become unstable, and may 

fall over a certain speed. It is important to understand the causes of these modes from a safety 

point of view. However, it had long been thought that the detailed elucidation of the causes are 

difficult using conventional Eigenvalue analysis.  

A new method was proposed to understand the causes of the two vibrational modes[2],[3]2)-3). 

This method is named as Energy Flow Method. In this Energy Flow Method, the cause of the 

mode generation can be understood by calculating the energy flow by the force (torque) acting 

motorcycle. 

In this paper, we show that the straight running stability analysis using the energy flow method 

can provide more detailed information than the findings obtained about 40 years ago. 

More specifically, it is shown that the method proposed here can identify the terms of the equa-

tion of motion that governs the stability change. 

This paper is organized as follows. First, review the basic concepts of the energy flow method. 

Before proposing a detailed energy flow method, we discuss the key degrees of freedom that 

govern the weave mode. Then we will introduce how to use the detailed energy flow method. In 

this discussion, we will use the change of caster angle, which is a well-known vehicle design 

specification, as an example. The last chapter is devoted to discussing the possibilities of this 
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detailed energy flow method. 
 

2 ENERGY FLOW METHOD USING EIGENVECTORS 

First, the basic idea underlying energy flow method [2] is reviewed. 

The time derivative of the kinetic energy of any system is given by the following equation. 
d/dt( 1/2  ) =    =   

where,  is the mass of the system, and ,  are the velocity and acceleration, respectively. 

On the other hand, as well known, the equation of motion of this system is expressed as follows. 

 = + +  + ・・・         （2） 

where, ,   are forces acting the system. 

Using equation (2), equation (1) can be rewritten as 
d/dt( 1/2  ) =   =( + +  + ・・・)          

= + +  + ・・・      （3） 
The meaning of equation (3) is that the time change of kinetic energy can be known by the 

product of the individual forces acting on the system and the velocity. 

That is, when  is positive, it means that kinetic energy is increased by the force . 

This can be interpreted as the force . promoting the motion. 

Applying this idea to the wobble mode, it can be interpreted as follows. 

It is possible to know the generation mechanism of the wobble mode by multiplying the force 

acting on the steering system by the steering angular velocity, since the wobble mode is a vibra-

tion of the steering system. For example, when  is positive, the force  excites the wob-

ble mode, and when  is negative,  suppresses the wobble mode. 

There are two methods of calculating energy flow. One is a method using a numerical solution 

of the equation of motion. The other one is to use eigenvectors. The simulation method is intui-

tive and easy to understand, but it takes time to calculate. 

Calculations using eigenvectors have been shown to give exactly the same results as the simu-

lation method (2). Here, an energy flow method using eigenvectors is described. 

The wobble mode is taken as an example, in order to help understanding easily. It is well known 

that the wobble mode is a vibration of the steering system. 

Therefore, we use the equation of motion (4) for the steering system. 

(Ifz + Mf e2)  =－Mf e 1－(Mf ek + Ifz cosε) －(Mf e j + Ifz sinε) －(Mf e + ify/Rf sinε) 

1 +ify/Rf cosε 1 －(t Zf－Mf eg) －(t Zf－Mf eg)sinεδ－tYf－cosεTzf－sinεTxf， (4)                   

Here, the symbols Ifz and Mf represent the moment of inertia and mass of the front frame, and e, j 

and k are the distance from the steering axis, the height, and the front and back distance of the center 

of mass of the front frame, respectively.  Symbol t is Mechanical trail, ε is caster angle. The me-

chanical variables of the four degrees of freedom are ,ψ, , ,which represent lateral velocity, yaw 

angle, roll angle and steering angle, respectively. In terms of tire force, Yf, Tzf and Txf represent the 

lateral force, aligning torque and overturning torque of the front tire, respectively. The dot above 

the symbol of a variable represents the time derivative of that variable. Equation (4) is the New-

ton’s second law, so the right side terms are the torques acting on the steering system. However, 

in the energy flow method, these are simply called "forces". See references [1] and [2] for the 

complete set of equation of motion. 

In the energy flow method using eigenvectors, the eigenvectors are substituted into the part 

corresponding to the variables of the above equation (4). The eigenvectors are given by magni-

tude and phase with reference to a certain eigenvector. Therefore, when eigenvectors are substi-

tuted into Equation (4), the forces are represented by a two-dimensional vector, as shown in 

Figure 1. Here, the steering angular velocity vector is used as a reference. The arrows shown by 

solid lines in Figure 1 represent the forces acting on the steering system. According to the energy 

flow method [2], the horizontal X component of these forces is proportional to the real part of 

the eigenvalues, and the proportional coefficient is the coefficient Ifz + Mf e2 on the left side of 

Equation (4). Also, the vertical Y component is proportional to the imaginary part of the eigen-

value (proportional coefficient is Ifz + Mf e2 ). The sum of these forces is the arrow shown by the 
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broken line in the figure. It is possible to know the activation mechanism of the wobble mode, by 

examining at the X component of each force.  

In the example shown in Figure 1, it can be seen that the wobble mode is mainly excited by 

yaw rate force and roll rate force, on the other hand, suppressed by lateral acceleration force and 

front tire force. 

                       
Figure 1. Configuration of forces acting on steering system 

 

3 DOMINANT DEGREE OF FREEDOM FOR WEAVE MODE 

As is well known, the wobble mode is considered to have the steering system as the main free-
dom because of the relative magnitudes of the eigenvectors. 

On the other hand, weave mode is believed to be a complex vibration mode in which four de-
grees of freedom were coupled. However, according to reference [3], it is concluded that the de-
gree of freedom of the yaw angle system affects the weave mode most strongly. It is recog-
nized that the results derived from this point of view fit well with the experience of engineers 
involved in motorcycle design. 

The dynamical supporting evidence is shown here. In general, the equation of motion that de-
scribes harmonic vibration is given by . As well known, the frequency is known 
to be proportional to . This idea is applied to the four-degree-of-freedom model, in 
order to specify the degree of freedom that greatly affects weave mode. That is, the coefficients 
of the acceleration term in the left side of equation of motion are independently changed, and 
the change of the eigenvalue is examined. Then, we compare the change of the Eigen value im-
aginary part with the prediction result in the one degree of freedom theory. It is hypothesized 
that the most matched degree of freedom is the dominant degree of freedom for the weave 
mode. 

This hypothetical correctness is made for the wobble mode before the discussion to the weave 
mode. For example, the lateral motion freedom is examined as follows. The lateral acceleration 
term of the equation of motion with respect to the lateral freedom is increased by 10%. Then, 
the imaginary part of the eigenvalue at that condition is calculated in order to compare with the 
expected eigenvalue, which is (1 / 1.1 )1/2of the original value. The considerations for the other 
three degrees of freedom are done in exactly the same way. 
Figure 2 shows the comparison of the coefficient change of the lateral motion system. The compar-

ison of the yawing system is shown by Figure 3. Figure 4 is a comparison of rolling freedom. 
Figure 5 shows for steering freedom. In these figures, horizontal axis shows vehicle running 
speed. The original imaginary parts of Eigen value are shown by black circles with solid line. 
And the white circles with solid line show the imaginary part of Eigen values after changing the 
coefficient. The predicted values are indicated by the triangular marks connected by a broken 
line. 
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It can be understood from Figure 5 that the change of the imaginary part of the eigenvalue 
when the steering acceleration term of the steering system is changed agrees well with the pre-
dicted value. 

However, it can be seen from Figures 2-4 that the results of changing the other three freedoms 
do not show good agreement with the predicted value compared with Figure 5. These results are 
consistent with the conventional interpretation. Thus, we can consider that the hypothesis intro-
duced above is justified. 
 
 
 
                      
 

 

 

 

 

 

               

Figure 2. Imaginary part of Wobble Mode Eigen Value when changed Lateral acceleration coefficient 
 

 

 

 

 

 

 

 

     

               

Figure 3. Imaginary part of Wobble Mode Eigen Value when changed Yawing acceleration coefficient 
  

 

 

 

 

 

 

 

 

 

               

Figure 4. Imaginary part of Wobble Mode Eigen Value when changed Rolling acceleration coefficient 
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Figure 5. Imaginary part of Wobble Mode Eigen Value when Steering acceleration coefficient 

 

 

The examination for weave mode are shown in Figures 6-9. The format of the Figure is the 
same as in Figures 2-5. Figure 6 shows a comparison for lateral freedom, where the change in 
the eigenvalues is calculated when the coefficient of the acceleration term in the lateral motion 
system is increased by 10%, and compare the Eigen value with the predicted value. Figures 7-9 
are comparisons of yawing, rolling and steering freedoms respectively. 

   
 

 

 

 

 

 

 

 

 

                  

Figure 6. Imaginary part of Weave Mode Eigen Value when changed Lateral acceleration coefficient 

 

 

 

 

 

 

 

 

 

                     

Figure 7. Imaginary part of Weave Mode Eigen Value when Yawing acceleration coefficient 
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Figure 8. Imaginary part of Weave Mode Eigen Value when Rolling acceleration coefficient 

 

 

 

 

 

 

 

 

 

 

                   

Figure 9. Imaginary part of Weave Mode Eigen Value when Steering acceleration coefficient 

 

From these figures, it can be said that coefficient change of yaw angle acceleration of yawing 

system shows very good agreement with predicted value. However, the other 3 freedoms do not 

show a good agreement, compared with yawing freedom. 

These discussions show that the weave mode is to be main vibration of the yaw angle system, 

and give the theoretical support for conventionally claimed [3] and for the experience of the de-

signers and producers. 
 

 

4  CALCULATION PROCEDURE OF DETAILED ENERGY FLOW METHOD 

As is it is well known that the stability of straight running changes due to changes in designing 

parameters. In this chapter, we will describe the procedure that can identify the cause of Eigen 

value change, tracing back to the original equation.  

In the method proposed here, we first understand the cause in a large scale. Then, we examine 

the detailed energy sequentially and finally clarify the cause factor by means of only one term in 

equation of motion. The method consists of four major steps following above idea, as shown in 

Figure 10 and Figure 11. The energy involved in characteristics can be divided into two. That is, 

it is divided into energy due to the force of the vehicle body interaction, internal forces, and the 

one due to the force from the outside of the vehicle, external forces. Here, tire force is taken as 

the external force. 

In the first step, energy is divided into two parts, one is due to the interaction between body 

movements, and the other is due to the tires. Then, it is examined which is the cause of the ener-

gy change (Figure 10).  

The second step is to identify the most contributing elements or freedoms(Figure 10). For ex-
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ample, in the case of in-vehicle Body energy, one degree of freedom that makes the largest contribu-

tion is extracted from the four degrees of freedom. In the case of tires, it is examined whether the 

contribution of the front tire is larger or the contribution of the rear tire is larger. 

 

 

 
 

 

 

 

 

                       

Figure 10. Analysis procedure: first and second steps 

                     

In the third step, as shown in Figure 11, more detailed contribution is identified. For example, 
taking the degree of freedom of yaw as an example, we examine whether the yaw acceleration 
or the yaw rate contribution is greater. Furthermore, it is examined whether the cause is due to 
the change in magnitude of the force vector or the phase of the vector. When the case is due to 
phase, more detailed examination of the contribution is not possible. Therefore, a detailed study 
on the magnitude of the force vector is advanced (Figure 11). 

At the beginning of the fourth step, it is confirmed whether the cause of the magnitude of the 
force vector is due to the coefficient of the equation or the change in the magnitude of the ei-
genvector (upper part of 4th Step stage in Figure 11). Also, more detailed discussion of the 
magnitudes of eigenvectors is not possible. 

Thus, it is finally clear which part of the relevant coefficients of the equation are responsible 
for the change of the eigenvalues (lower part of 4th Step stage in Figure 11). This method is de-
scribed next by taking the case where the caster angle ε is increased by 20% as an example. 
 

                    
 

Figure 11. Analysis procedure: 3rd and 4th steps 

 

                       
4.1. Application to Wobble Mode 

As is well known, the wobble mode becomes unstable and the weave mode becomes stable 

when the caster angle is increased. Here, the method proposed above is used to identify the 

causes. The wobble mode is considered first. 
In the first step, energy change of steering freedom is shown in Figure 12.  It can be seen that 

when the caster angle is increased, the total energy increases and wobble mode becomes unstable 
(positive energy change). The main cause is the increase of the energy of the body system. Con-
versely, the energy of the tire system decreases, and it is understood that the tire system contrib-
utes to stabilization. 
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Figure 12. Energy change of steering freedom: Wobble Mode 
 

In the second step, Figure 13 shows that the contribution of the yaw freedom is the largest 
among four degrees of freedom. 

 

 

 

 

 

 

 

 

                 

Figure 13.  Detailed energy change of steering freedom: Wobble Mode 
 

Next is the third step. In the energy contribution of the yaw angle freedom shown by Figure 14, 

the contribution of the yaw rate is positive and larger than the contribution of the yaw angular 

acceleration. According to Figure 15, examining the contribution of yaw rate, it is understood 

that the contribution due to the magnitude change is larger than the contribution of the phase 

change.  So analysis is continued. 
 

 

 

 

 

 

 

 

                   

Figure 14. Energy change contributions of steering freedom: Body contribution 
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Figure 15. Phase and Magnitude effects of acting force on steering freedom: Wobble Mode 

 

The last is the 4th step. The next thing to consider is whether the cause is due to changes in the 

equation coefficient or eigenvector. It is necessary to investigate the change of coefficient of 

equation and the change of eigenvector of yaw rate. The changes in these values are shown in 

Figure 16. In this figure, the coefficient change is shown on the left side, and the right side is the 

change in the magnitude of the eigenvector of the yaw rate. It can be understood from Figure 16 

that increasing the caster angle increases the yaw rate force, which is due to the fact that the coeffi-

cient of the equation is increased. That is the coefficient of the equation is larger (1.1 times) than 

the magnitude of the eigenvector (1.02 times). 

 

                     
 

Figure 16. Coefficient and Eigen Vector change of Yaw Rate force acting to steering system 
 

It can be seen that the coefficient of the corresponding equation is (Mf e + ify/Rf sinε) 1 of the 

fourth term on the right side of equation (4). And it is clear that the corresponding term is ify⁄ Rf 

sinε. It is a so-called gyro moment. That means, it can be understood that the cause is that the 

term sinε becomes large. 

 

The results of the above study are summarized as follows. 

 (1) Wobble Mode destabilizes when the caster angle ε is increased. 

 (2) The cause is the force by the motion of the motorcycle body. 

 (3) In more detail, this is because the yaw rate force acting on the steering system increases. 

 (4) The reason for the increase in the yaw rate force is that ify⁄ Rf sinε is contained in the  

coefficients of the equation. 

 (5) That is, it is caused by the increase of the gyro torque of the front wheel. 
 

 

4.2. Application to Weave Mode 

Weave mode can be considered as well. The weave mode is stabilized by the energy contribution of 

the tire system, as can be seen from Figure 17. 
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Figure 17. Energy change of yawing freedom: Weave Mode 
 

 

 

 

 

 

 

 

                  

Figure 18. Detailed energy change of Tire contribution: Weave Mode 

 

 
Examination of the detailed force component in Figure 18 shows that the contribution of the side 

force of the front tire is the largest. Next, we discuss the details of the front tire side force. The equa-

tion for the front tire side force is given by the following equation. 
Yf =－CYs1/ 1 1－CYs1l1/ 1 ＋CYs1t/ 1 ＋CYc1 ＋( CYs1 cosε＋CYc1 sinε ) δ－σf/ 1 f   (5) 

where CYs1 and CYc1 are cornering power and camber stiffness of front tire respectively.  And σf is 

relaxation length of front tire side force. 

The result of substituting Eigenvector of weave mode into the variable part of this equation is 

shown in Figure 19. 

 
 

 

 

 

 

 

 

 

 

                      

Figure 19. Configuration of front tire side force elements: Weave Mode 

 

It is possible to understand how each element contributes from this figure. 

In the figure, increasing the caster case is represented by red arrows. The X component of each 

vector directly contributes to the stability of the weave mode. For example, the yaw rate element 

contributes the most to the stability, and the steering angle component leads to destabilization. 

It is also known that the steering angle element (shown by red broken arrow) changes because 

the phase advances and the size is reduced, when the caster angle is increased. 
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Figure 20 shows this more quantitatively. From figure 20, we see that the weave mode is stabi-

lized by the change in magnitude at the same time as the phase advances, as shown by the com-

ponent part of the steering angle. The effect of advancing the phase is stronger about 3.5 times 

of the magnitude effect (3.77 / 1.1 = 3.42). 

This situation is shown in more detail in Figure 21. The phase advance of the steering angle el-

ement is due to the phase advancing of the steering angle eigenvector. 
 

 

 

 

 

 

 

 

 

                   

Figure 20. Phase and Magnitude effects of front tire side force elements: Weave Mode 

 

 

 

 

 

 

 

 

                   

Figure 21. Coefficient and Eigen Vector change concerning steer angle element of  

front tire side force: Weave Mode 

 

It can be also seen that the magnitude change is due to the change in the coefficient of the 

equation and is not due to the change in the magnitude of the eigenvector. The coefficient of the 

steering angle element corresponds to the fifth term on the right side of equation(5), that is 

CYs1cos＋CYc1sinε. This coefficient contains two factors concerning caster angle. It is easy seen 

that the factor whose value decreases as the caster angle increases is CYs1 cosε. This term is cor-

nering power. 
 

The results of the study of weave modes are as follows. 

 (1) Weave Mode stabilizes when the caster angle ε is increased. 

 (2) The cause is tire force, that is the front tire side force. 

 (3) It is due to the fact that the phase of the front tire side force advances and at the same time 

the magnitude decreases. 

 (4) The change in the phase and magnitude of the front tire force is mainly due to the change in 

the steering angle element. 

 (5) The phase change and the size change of the steering angle element also occur. 

 (6) The change in the phase of the steering angle element is caused by the phase change of the 

steering angle Eigenvector. 
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 (7) The magnitude of the steering angle element can be attributed to the coefficient CYs1cosε. 
 

 

4 CONCLUSIONS 

Heretofore, it has been thought that the mechanism that governs the straight running stability 
of a two-wheeled vehicle is not clear in the Eigenvalue analysis. However, as discussed here, it 
has become clear that the activation mechanism etc. of the two vibration modes of a two-
wheeled vehicle can be elucidated by using the energy flow method with Eigenvectors. 

The energy flow method can be applied to various situations. For example, it is applicable to 
solve the high speed instability of weave mode and wobble mode.  As is well known that the 
characteristics of high-speed weave mode have not been deeply understood until 50 years after 
Sharp's Eigenvalue analysis. 

The present study is a discussion using the most basic model of a two-wheeled vehicle, so 
these findings are unlikely to immediately contribute to the development of everyday two-
wheeled vehicles. However, this method is expected to enable basic interpretation of the charac-
teristics of a two-wheeled vehicle dynamics. 
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