Motorcycle Dynamics and Control of the MOTOROiD That Stands Upright Even When Stopped

Mitsuo TSUCHIYA¹ Eiichirou TSUJII²

- ¹Fundamental Technology Research Division, YAMAHA MOTOR CO., LTD. Shizuoka, Japan
- ²Business Planning Division, YAMAHA MOTOR CO., LTD. Shizuoka, Japan

Introduction

In this report,
we developed motorcycle
"MOTOROiD" that can sense its
own state, stand up off its
kickstand and remain upright
unassisted by applying the invert
pendulum principle.

Simplification of motorcycle

The MOTOROiD body has a rotating axis that is capable of shifting the position of the center of gravity of the motorcycle as a whole. The mechanism is called the Active Mass Center Control System (AMCES), and the axis is referred to as the AMCES axis.

The front body (blue: Q_1) and the rear body(red: Q_2) are rotated using the actuators (white) at the ends of the AMCES axis. This structure acts as an inverted double pendulum, with the portion linking Q_1 and Q_2 dubbed Acrobot due to the placement of the actuators. The Q_1 roll angle is defined as q_1 , and the Q_2 rotation angle as q_2 .

Equation of motion

A Lagrangian function was used to define a state equation from the vehicle specifications and calculate the Q_1 and Q_2 center of gravity position and mass, as well as the actuator torque and rotation speed, that would enable standing up off the kickstand.

$$\begin{cases} \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_1} \right) - \frac{\partial L}{\partial q_1} + \frac{\partial D}{\partial \dot{q}_1} = 0 \\ \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_2} \right) - \frac{\partial L}{\partial q_2} + \frac{\partial D}{\partial \dot{q}_2} = u \end{cases}$$

 T_i : Kinetic energy of Q_i

 U_i : Potential energy of Q_i

 D_i : Dissipated energy of Q_i

 $L = \Sigma T_i - \Sigma U_i$

 $D = \Sigma D_i$

u: Torque

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{Bmatrix} \ddot{q_1} \\ \ddot{q_2} \end{Bmatrix} = \begin{bmatrix} b_{11} & -c_1 & b_{13} & 0 & 0 \\ b_{21} & 0 & b_{23} & -c_2 & 1 \end{bmatrix} \begin{Bmatrix} q_1 \\ q_2 \\ \ddot{q_2} \\ \ddot{q$$

$$+i_{2xx}\alpha^2 + m_2(p_{2y}\alpha - p_2)$$
$$b_{11} = m_1gp_{1y} + m_2gp_{2y}$$

 $b_{11} = m_1 g p_{1y} + m_2 g p_{2y}$ $b_{13} = m_2 g (p_{2y} \alpha - p_{2x} \beta)$

 $b_{21} = b_{13}$ $b_{23} = m_2 g (p_{2y} \alpha - p_{2x} \beta) \alpha$

 $\alpha = \cos(a_2), \ \beta = \sin(a_2)$

Experimental identification and control

- 1 Manufacture experimental motorcycle
- 2 PD control(K) for motorcycle stabilization
- 3 Measure state quantity(x) and torque(u_d) by applying torque disturbance
- 4 Identify state equations using MATLAB arx
- 5 linear secondary regulator(lqr) design was applied weight only to q_1 and its speed \dot{q}_1
- 6 Confirm
 performance with
 simulation and
 apply to motorcycle

Summary

- ✓ The MOTOROiD body has a rotating axis that is capable
 of shifting the position of the center of gravity of the
 motorcycle.
- ✓ Experimental identification of motorcycle with stabilized feedback and refined state equation.
- ✓ To enhance vehicle stability, a linear secondary regulator(lqr) design was applied weight only to q_1 and its speed (\dot{q}_1) .