Motorcycle Dynamics and Control of the MOTOROiD That Stands Upright Even When Stopped #### Mitsuo TSUCHIYA¹ Eiichirou TSUJII² - ¹Fundamental Technology Research Division, YAMAHA MOTOR CO., LTD. Shizuoka, Japan - ²Business Planning Division, YAMAHA MOTOR CO., LTD. Shizuoka, Japan #### Introduction In this report, we developed motorcycle "MOTOROiD" that can sense its own state, stand up off its kickstand and remain upright unassisted by applying the invert pendulum principle. ### Simplification of motorcycle The MOTOROiD body has a rotating axis that is capable of shifting the position of the center of gravity of the motorcycle as a whole. The mechanism is called the Active Mass Center Control System (AMCES), and the axis is referred to as the AMCES axis. The front body (blue: Q_1) and the rear body(red: Q_2) are rotated using the actuators (white) at the ends of the AMCES axis. This structure acts as an inverted double pendulum, with the portion linking Q_1 and Q_2 dubbed Acrobot due to the placement of the actuators. The Q_1 roll angle is defined as q_1 , and the Q_2 rotation angle as q_2 . # Equation of motion A Lagrangian function was used to define a state equation from the vehicle specifications and calculate the Q_1 and Q_2 center of gravity position and mass, as well as the actuator torque and rotation speed, that would enable standing up off the kickstand. $$\begin{cases} \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_1} \right) - \frac{\partial L}{\partial q_1} + \frac{\partial D}{\partial \dot{q}_1} = 0 \\ \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_2} \right) - \frac{\partial L}{\partial q_2} + \frac{\partial D}{\partial \dot{q}_2} = u \end{cases}$$ T_i : Kinetic energy of Q_i U_i : Potential energy of Q_i D_i : Dissipated energy of Q_i $L = \Sigma T_i - \Sigma U_i$ $D = \Sigma D_i$ u: Torque $$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{Bmatrix} \ddot{q_1} \\ \ddot{q_2} \end{Bmatrix} = \begin{bmatrix} b_{11} & -c_1 & b_{13} & 0 & 0 \\ b_{21} & 0 & b_{23} & -c_2 & 1 \end{bmatrix} \begin{Bmatrix} q_1 \\ q_2 \\ \ddot{q_2} \ddot{q$$ $$+i_{2xx}\alpha^2 + m_2(p_{2y}\alpha - p_2)$$ $$b_{11} = m_1gp_{1y} + m_2gp_{2y}$$ $b_{11} = m_1 g p_{1y} + m_2 g p_{2y}$ $b_{13} = m_2 g (p_{2y} \alpha - p_{2x} \beta)$ $b_{21} = b_{13}$ $b_{23} = m_2 g (p_{2y} \alpha - p_{2x} \beta) \alpha$ $\alpha = \cos(a_2), \ \beta = \sin(a_2)$ ## Experimental identification and control - 1 Manufacture experimental motorcycle - 2 PD control(K) for motorcycle stabilization - 3 Measure state quantity(x) and torque(u_d) by applying torque disturbance - 4 Identify state equations using MATLAB arx - 5 linear secondary regulator(lqr) design was applied weight only to q_1 and its speed \dot{q}_1 - 6 Confirm performance with simulation and apply to motorcycle # Summary - ✓ The MOTOROiD body has a rotating axis that is capable of shifting the position of the center of gravity of the motorcycle. - ✓ Experimental identification of motorcycle with stabilized feedback and refined state equation. - ✓ To enhance vehicle stability, a linear secondary regulator(lqr) design was applied weight only to q_1 and its speed (\dot{q}_1) .