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ABSTRACT

The estimation of tyre forces in off-road motorcycle is required to measure objectively its per-
formance. It requires the interaction between motorcycle and the rider in standing position. The
existing rider model for off-road motorcycles is computationally expensive and it has not been
validated. In this article we present a model for a standing rider based on observed kinematics
and tested it with experimental data collected on a motocross track. Results shows that the rider-
motorcycle forces are calculated in a negligible time and furthermore are more realistic than with
the previous model. When used in the estimator, the forces were mostly similar, and in discrepan-
cies, the estimations with the simpler model were more realistic.
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1 INTRODUCTION

Off-road motorcycle can transit over roads with significant irregularities and elevation changes.
The impulses from the road are absorbed by the suspension system and by the rider driving in
standing position. The rider’s mass contribution to motorcycle-rider system is non-negligible [1],
therefore, a rider model is required.

Existing rider models usually focus on control strategies [2] [3], (see [1] for a review). They
consider the rider in seated position, since were developed for on road conditions. Differently, in
off-road, since transit is in standing position, the rider’s arms and legs provide significant vibration
isolation and hence they should be included as model components [4]. Multibody rider models for
off-road bicycles were developed by Wilczynski[5] and Wang [4] to estimate frame loads.

Recognizing the similar driving techniques used by drivers in off-road bicycles and motorcycles,
the authors [6] proposed a simplified version of the bicycle models to estimate off-road motorcycle
tyre forces. This estimation process consists on two steps. First, the differential equations of
motion of the rider are integrated to calculate the rider forces, and second, the algebraic inverse
equations of motion of the motorcycle are solved to calculate the tyre forces. With a processor
of to 2.5 GHz and 8 Gb RAM, the rider model takes about 5 times the real time of the data
sampled at 1.6 kHz, while the second steps takes only 0.5 times. Furthermore, it has not being
validated experimentally, nor on the parameters used, since we have taken the ones from bicycles,



which were measured for smaller road amplitudes [5], consequently there is no certainty on the
estimation,

Given that the rider is an important component of the overall motorcycle dynamics and that the cur-
rent available model for off-road, is computationally expensive and moreover there is no certainty
on its validity, the rider model for off-road motorcycle is an open question.

In this article, we present a simple rider model which describes the dynamics with algebraic expres-
sions by assuming the rider kinematics instead of obtaining them from integration of the equations
of motion. This removes the need of integration of the previous model, making the computation
time practically negligible, while still being representative of the rider-motorcycle interaction. In
section 2, we briefly present the tyre force estimator in which the rider forces are needed; in sec-
tion 3, we describe the previous rider model and present the simpler one. In section 4, we use
experimental data collected on a motocross track to compare the rider forces and the estimated
tyre forces yield with both. Finally, we discuss limitations and summarize main conclusions.

2 INVERSE DYNAMICS METHOD FOR TYRE FORCE ESTIMATION

In this section a tyre force estimator, developed for off-road conditions is described. We con-
sider the problem of calculating the tyre forces using a multibody description of the motorcycle,
assuming that kinematic variables are known from experimental measurements. To process the
experimental data as efficiently as possible, we derive and manipulate a set of symbolic equations
using MBSymba, [7, 8, 9] which is an add-on for Maple [10]. To compensate for measurement
errors, we derive an overdetermined system and to further improve the results, we add a set of con-
straints equations. Finally we solve for the tyre forces using a non-negative least squares method.

2.1 Motorcycle equations of motion

The equations of motion of the motorcycle are derived under the following four assumptions. First,
we consider in plane motion only, since our interest is mainly on manoeuvres such as braking and
accelerating, Figure 1. Second, by neglecting structural vibrations, we can represent the motorcy-
cle by four interconnected bodies with five degrees of freedom, which are described by as many
coordinates,

q = [xs, zs, µ, zf , αr]
T , (1)

where, xs and zs are horizontal and vertical displacement of the chassis centre of mass, µ is
chassis rotation, zf is the front suspension compression, and αr is the rear suspension compression
defined as the relative rotation between swingarm and chassis. Third, since the manoeuvres of
interest are generally transited in standing position, we consider that the rider interacts with the
handlebar and foot pegs only. Fourth, the contact point with the ground is considered to be directly
under the wheel centre as seen in nominal condition. This implies that the contact point does
not move forward or backwards due to road irregularities, and therefore, normal and tangential
components are always aligned with z3 and x3 axis, respectively. This simplification is based on
the observation that only when transiting large obstacles, such as whoops in Figure 3, the contact
points move significantly from the bottom of the tyres. In this way, the estimation of the contact
point position, which is not a trivial task, is avoided and there are only four tyre force components
to be determined.

We derive five equations of motions, one for each degree of freedom, and collect them as

Mq̈+mv = Awg+Asfs +Arfr +Atft, (2)

where, M is the mass matrix, q̈ is the acceleration vector, g is gravity acceleration, fs, fr, ft are
suspension, rider and tyre force vectors respectively and the matrices Aw, As, Ar, At project
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Figure 1. Motorcycle model. xs, zs and µ are horizontal, vertical and angular position of
chassis centre of mass; zf is fork compression, and αr is swing arm angular compression;
Ax, Az , Lx, Lz are rider’s arm and leg forces acting over the handlebar (H) and foot-peg (P);
Nr andNf are normal forces over the tyres assumed to be along the z3, which is tilted µ from
absolute vertical; Br, Bf are rear and front braking force and Dr is rear driving force which
are assumed to be along chassis x-axis.
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these forces along each of the five coordinates. mv is the pseudo-mass vector which contains
relative acceleration terms, and also the product of wheels rotational inertia by their angular ac-
celerations. We did not model wheel rotations as coordinates in q since we can measure them
directly to represent the rotational inertia effect and therefore, we did not need to derive equations
of motion for them. See Appendix A, for explicit description of matrices and vectors.

In Equation (2), masses , rotational inertias, and geometry in M,mv and projection matrices can
be measured with no major complication. Accelerations in q̈, velocities and angular acceleration
in mv, and positions can be measured with accelerometers, potentiometers and tachometers or
derived from them; suspension forces fs can be estimated from characterisation of the spring and
damper; and the rider forces fr can be estimated as described on Section 3.

Acknowledging the presence of measurement errors, we derive an overdetermined system to re-
duce them. In particular, Equation (2) consist of five equations to determine four unknown tyre
force components.

2.2 Constraints of the optimisation

The overdetermined system can not compensate the measurement errors completely and non-
physical solutions can be obtained regardless. To reduce these non-physical solutions, we add
equality and inequality constraints to the optimisation.

On one hand, we add inequality constraints to consider that normal forces and front tangential
force (braking) can physically exist in one direction only. By defining the rear tangential force as
two non-negative forces as well, we add the constraints,

ft = [Nf Nr Bf Br Dr]
T ≥ 0, (3)

where,Nf andNr are normal forces on front and rear tyres; Bf andBr are braking forces on front
and rear tyre; and Dr is the driving force on the rear tyre. In this way, there are five variables to be
determined, nonetheless, the problem still has four unknowns, since by definition only Dr or Br

exist at anytime.

On the other hand, we add equality constrains to impose a solution when some terms are known
under certain driving conditions. These are: Nf = Bf = 0 when front wheel is detached;
Nr = Br = Dr = 0 when rear wheel is detached; Bf = Br = 0, when motorcycle is driv-
ing (accelerating); and Dr = 0 when braking. In order to impose these constraints only under the
corresponding conditions, we multiply each constraint equation by an activation weight, Wii, that
is 1 when the condition is satisfied, and 0, otherwise. In this way, we express the constraints as

Wft = 0, (4)

where W = diag(Wii).

2.3 Solution of the inverse dynamic problem

The five Equation (2) can not be satisfied simultaneously by any vector ft due random errors on the
measurements. Then, an alternative approach, is to find ft such that it minimizes Aft−b1, where
b1 = Mq̈+mv −Awg−Asfs −Arfr are the known terms. Considering the constraints, the
problem is the optimisation

find ft that :
min
ft
‖B(Aft − b)‖ ,

subject to: ft ≥ 0, (5)
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where,

B =

[
Bd 0
0 Bc

]
, A =

[
At

W

]
, b =

[
b1

0

]
. (6)

In this formulation, three considerations are taken. First, ft is solved in the least squares sense.
Second, the equality constraint Wft = 0 are appended to the dynamic equations with a heavy
weight Bc, since it allows the constraints not to be met exactly, which serves to compensate errors
in the transitions from active to inactive constraints. Third, difference in uncertainties between
dynamic equations can be taken into account by the weights in Bd.

Equation (5) is a non-negative least squares problem, which is solved numerically by the Lawson-
Hanson algorithm for non-negative problems, presented in [11], and implemented in MATLAB
[12] as lsqnonneg.

3 RIDER FORCES

In this section, the rider model presented by the authors in [6] is briefly described, which is fol-
lowed by the presentation of a simpler rider model. The former rider is referred as Rider A, while
the latter as Rider B, to simplify notation.

Rider A consists on one body connected to the motorcycle by arms and legs modelled with springs
and dampers, Figure 2a. Two main assumptions were made. First, forces of arms and legs can be
represented by passive elements, which are assumed to act between shoulder-handlebar and hip-
foot peg directions respectively. Second, since it is observed that while riding the absolute rotation
is small compared to vertical and horizontal translations, a hip torque is added to keep the angle
constant. This torque is calculated from Euler’s equation on the torso’s y−axis to cancel-out the
torque produced by arm and leg forces. The calculation of the forces is done in two steps. First,
the kinematics of the rider is determined by integrating the equation of motion

ẋA = [ẍA z̈A ẋA żA]
T = g(xA,u) (7)

which are based on the chassis motion u, and subsequently, the forces, are retrieved from the
spring and damper models of arms and legs,

fr,A = [Lx Lz Ax Az]
T
A = h(ẋA,xA,u). (8)

Rider B, Figure 2b, is developed taking into consideration two situations. First, observation of the
rider driving in irregular roads shows that the centre of gravity, which is approximately in the hip,
is almost on a constant vertical position (Figure 3), therefore velocity and acceleration are small
(żB ≈ 0 and z̈B ≈ 0), which implies that arm and leg vertical forces are close to equilibrium
with rider’s weight, and consequently, are close to constant. Second, in braking and acceleration,
his/her centre of mass barely moves horizontally with respect to the chassis, which implies that
their horizontal accelerations should be similar (ẍB ≈ ẍs). Consequently, the total vertical and
horizontal forces over the rider can be approximated as the weight and the horizontal inertial force,
respectively. In order to further simplify the representation, we assume that the vertical force is
completely exerted through the legs, and the horizontal force, by the arms, resulting in

fr,B = [Lx Lz Ax Az]
T
B = [0mrg −mrẍs 0]

T . (9)

Additionally, we consider that all components are zero if contact is lost in front and rear wheels
simultaneously.
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Figure 2. Rider models. Rider A consist on one body connected to the motorcycle by arm
and legs, assumed to act passively, and a torque on the hip, Thip, that keeps the torso angle
constant. The motion of handlebar (H) and foot-peg’s (P) excite the rider, and from the spring
and dampers models of arms and legs, the forces are retrieved. Differently, Rider B consist
on two forces explicitly defined on terms of chassis motion (ẍs).

Figure 3. Two motorcycles riding through whoops section. It shows that although the riders
moves broadly, the vertical position of their hips shown in white and black dashed lines,
remains roughly at the same height [13].
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The underlying difference between both models, is where the assumptions are made. On Rider A,
they are made on the equations of motion that calculate the kinematics, while on Rider B, they are
made directly on the kinematics. The consequence of this is that Rider A can potentially repre-
sent accurately the kinematics, but it can also diverge significantly from reality if any significant
phenomena is being omitted from the equations. Conversely, on Rider B by representing only its
broad motion, it may not be accurate, but at least is similar to the real motion. Taking into account
that the forces depend on the motion, Rider A might provide a very close as well as very far esti-
mation of rider-motorcycle forces, while Rider B, although not exact, it is relatively similar to the
real interaction.

4 PERFORMANCE WITH EXPERIMENTAL DATA

The performance of both rider models are compared using data collected with a motocross motor-
cycle on three driving conditions. First, we compare arm and leg forces of both rider models. Then,
we use these forces as inputs for the estimator described in Section 2, to compare the estimated
tyre forces.

Data is collected using a 2017 motocross motorcycle driven by a professional driver on a mo-
tocross track. The following thirteen measurement are collected to compute ten out of seventeen
kinematic variables required by the estimator. An inertial unit under the seat measures chassis
vertical acceleration, pitch angle, and forward velocity (GPS); accelerometers located on steering
head and tail aligned with z3 axis are used to compute chassis pitch acceleration as the ratio be-
tween the difference measured by them and their distance; a potentiometer aligned with the fork
and an accelerometer at each end measures fork compression and compression acceleration, re-
spectively; similarly, the rear spring-damper unit compression and acceleration are measured with
a potentiometer and accelerometers at each end, which are then translated into rear suspension
compression angle using the relationship between spring versus angle displacements, see [14] for
details on the procedure; tachometers are used to measure wheel angular velocities. The remaining
seven variables are obtained by numerical integration or differentiations of the measured variables.
Integrations are performed by trapezoidal method with previous removal of signal mean to avoid
drift, and differentiations are performed by a finite impulse response filter with delay compensa-
tion. Lastly, the signals are band-pass filtered with a custom made filter using Fourier and Inverse
Fourier Transforms. Low-cut frequency on positions and forward velocity is the lowest positive
frequency, to maintain the signal mean which physically exists on them, while on the rest, is set to
zero, since if a mean exists, is due to noise. As high cut-off frequency, 20 Hz is used to remove
engine structural vibrations.

Three diverse driving conditions are selected to analize the performance of the rider models. First
situation consist on two consecutive jumps of ≈ 0.8 s flying time; second situation consist on ten
bumps usually referred as whoops; and third situation is a cornering manoeuvre which includes
braking and exit acceleration phases.

The forces of the riders on each situation are shown in Figure 4. It can be seen that Rider A
forces are significantly larger and more oscillatory than Rider B forces. For example, on landings
of Jumps (t = 1 and t = 2.8 s), Lz and Ax are about 4 and 6 times larger; and on cornering,
Ax oscillates seven times more. These forces are unlikely to be representative of reality, in first
instance because forces of more than 3000N, (1500 N on each limb) can hardly be resisted by
hands or feet, and second, if they would, it would imply large motions of the rider, which is
not observed in reality. This unrealistic motion of Rider A, which explains the unrealistic forces
implies that a significant phenomenon has been omitted from the equations, and which presumably
is the active control exerted by a real driver. Increasing the damping, not shown here, reduces the
oscillations but increases the magnitude of forces. Conversely, Rider B yields reasonable forces,
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as expected.

The result of using both riders into the tyre forces estimator, are shown in Figure 5. In broad terms,
it can be seen that the estimations are similar and in most of the disagreements, forces with Rider
A are larger. In Jumps, normal forces, and the driving force before them, are similarly estimated
with both riders, though with Rider A, Nf and Dr are about two times larger. In whoops, peaks in
normal forces and the sequence braking-driving-braking are detected with both riders. Disagree-
ments are seen inBr andDr which are higher with Rider A, and inNf , where there are extra peaks
estimated with Rider A. In cornering, braking and driving forces, as well as load transfers due to
these forces, are in good agreement with both rider models. The major discrepancies are seen on
Dr and Br which are more oscillatory with Rider A. Considering that the rider forces are linear in
the equations of motion of the estimator, it is expected to obtain larger and more oscillatory forces
with Rider A. However, since the equations of motion are solved in the least squares sense, these
larger forces are compensated to fit the remaining data of the equations.

It must be noted that in Rider B the most basic kinematic was assumed, namely, no vertical motion,
and the horizontal as the motorcycle. However, in reality, the rider translates vertically on jumps,
which implies that a larger force than his/her weight is required to pushing him/her up on the
launch and also on the landing, consequently higher tyre forces are also expected on this instants.
This could be taken into account by considering the vertical position of the chassis with a low-pass
filter to take into account the vibration isolation provided by arms and legs.

In summary, it was found that the simpler rider provides a more realistic description of the rider-
motorcycle interaction, which lead to a slightly more realistic estimation of the tyre forces. Fur-
thermore, the calculation time with the simpler rider was reduced to almost negligible, permitting
the estimation of tyre forces on real-time which opens the way to implement it on-board.

5 CONCLUSIONS

In this article we have presented a simple rider model to estimate tyre forces in off-road motorcy-
cles. It is based on assumptions on the rider kinematics, which removes the integration step used
on the previous model to determine the kinematics. This reduces the calculation time and also im-
proves the representation of the rider-motorcycle interaction. Tested with experimental data, the
simpler model showed forces more representative of reality that the previous model. When used
as input for an estimator of contact forces, the estimations were similar with both models, and in
discrepancies, the estimations with the simpler model were more realistic.
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Table 2. List of symbols. Sub-index i refers to f or r for front or rear; sub-index j, refers
to x and z directions; and sub-index k ∈ [1, 2, 3, 4], refers to rear wheel, swing arm, chassis,
and front wheel, respectively

A Generalized projection matrix
Ar Rider force projection matrix
As Suspension force projection matrix
At Tyre force projection matrix
Aw Weights projection matrix
B Generalized weight matrix
Bc Relative constraint eq. weight matrix
Bd Relative dynamic eq. weight matrix
M Mass matrix
W Constraint activation weights matrix
b Generalized known forces vector
b1 Known forces vector
fr Rider forces vector
fs Suspension forces vector
ft Tyre contact forces vector
mv pseudo-mass vector
q Motorcycle coordinates vector
Aj Arm forces along direction j
Bi Braking force on tyre i
Di Driving force on tyre i
Lj Leg forces along direction j
Ni Normal force on tyre i
X Ground forward axis
Z Ground downward axis
b X distance between body 1 and 3

h Height of chassis CoM
Ik Rotational inertia of body k
lr Distance from body 1 to swing arm main pin
ls Distance from swing arm main pin to its CoM
m Total vehicle mass
mk Mass of body k
mr Rider mass
Ri Radius of i wheel
w Motorcycle wheelbase
xs Horizontal displacement of chassis
x3 Chassis local horizontal axis
x3h Handlebar x-position in chassis frame
x3p Footpeg x-position in chassis frame
zf Fork compression
z3 Chassis local vertical axis
z3h Handlebar z-position in chassis frame
z3p Footpeg z-position in chassis frame
zs Vertical displacement of chassis
αr Rear suspension compression angle
αr0 Nominal rear suspension compression angle
ε Caster angle
µ Angular displacement of chassis
µ1 Angular displacement of rear wheel
µ4 Angular displacement of front wheel
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APPENDIX A: EQUATIONS OF MOTION

The equations of motion are derived under the four assumptions described in section 2.1, namely,
in plane motion, four bodies with five degrees of freedom, standing rider, and contact point under
wheel centres.

We derived an equation per degree of freedom using Newton-Euler equations in the following
order. First and second equations are sum of forces acting over all bodies along xs and zs re-
spectively; third equation, is sum of torques on all bodies around centre of mass of chassis; fourth
equation is sum of forces acting on front wheel along zf ; fifth equation is sum of torques acting on
rear wheel and swing arm, around the connecting point between body 2 and 3 (P23). Organizing
the equations in matrix form, we get

Mq̈+mv = Awg+Asfs +Arfr +Atft,

where the elements on the matrices are the following:

M1,1 =m4 +m1 +m3

M1,2 = 0

M1,3 = ((S (µ+ αr0 − αr)− S (µ+ αr0 )) lr + C (µ) (h−Rr) + S (µ) b)m1

+ (−zfC (µ+ ε) + C (µ) (h−Rf ) + (b− w)S (µ))m4

M1,4 = −m4 S (µ+ ε)

M1,5 = − lrm1 S (µ+ αr0 − αr)

M2,2 =m4 +m1 +m3

M2,3 = ((C (µ+ αr0 − αr)− C (µ+ αr0 )) lr + (−h+Rr)S (µ) + C (µ) b)m1

+ (zfS (µ+ ε) + (Rf − h)S (µ) + (b− w)C (µ))m4

M2,4 = −m4C (µ+ ε)

M2,5 = − lrm1C (µ+ αr0 − αr)

M3,3 =
(
(−2C (αr) + 2) lr

2 + ((−2Rr + 2h)S (αr0 − αr) + 2C (αr0 − αr) b+

(−2h+ 2Rr)S (αr0 )− 2 bC (αr0 )
)
lr +Rr

2 − 2Rr h+ b2 + h2
)
m1

+
(
(zf )

2 + ((2 b− 2w)S (ε) + (2Rf − 2h)C (ε)) zf +Rf
2

− 2Rf h+ b2 − 2 bw + h2 + w2
)
m4 + I1 + I2 + I3 + I4

M3,4 = ((Rf − h)S (ε) + (w − b)C (ε))m4

M3,5 =
(
(C (αr)− 1) lr

2 + ((−h+Rr)S (αr0 − αr)− C (αr0 − αr) b) lr
)
m1

− I1 − I2
M4,4 =m4

M4,5 = 0

M5,5 = lr
2m1 + I1 + I2
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mv1,1 =
(
((C (µ+ αr0 − αr)− C (µ+ αr0 )) lr + (−h+Rr)S (µ) + C (µ) b) (µ̇)2

−2 (α̇r)C (µ+ αr0 − αr) (µ̇) lr + (α̇r)
2C (µ+ αr0 − αr) lr

)
m1

+
(
(zfS (µ+ ε) + (Rf − h)S (µ) + (b− w)C (µ)) (µ̇)2 − 2C (µ+ ε) (żf ) µ̇

)
m4

mv2,1 =
(
((−S (µ+ αr0 − αr) + S (µ+ αr0 )) lr − S (µ) b+ (−h+Rr)C (µ)) (µ̇)2

+2 (α̇r)S (µ+ αr0 − αr) (µ̇) lr − (α̇r)
2 S (µ+ αr0 − αr) lr

)
m1

+
(
(zfC (µ+ ε) + S (µ) (w − b) + (Rf − h)C (µ)) (µ̇)2 + 2S (µ+ ε) (żf ) µ̇

)
m4

mv3,1 =
((

2S (αr) lr
2 + (2S (αr0 − αr) b+ (−2h+ 2Rr)C (αr0 − αr)) lr

)
(α̇r) µ̇

+
(
−S (αr) lr

2 + (−S (αr0 − αr) b+ (h−Rr)C (αr0 − αr)) lr
)
(α̇r)

2
)
m1

+ (2 zf + (2 b− 2w)S (ε) + (2Rf − 2h)C (ε)) (żf ) (µ̇)m4 + I1 µ̈1 + I4 µ̈4

mv4,1 =(−zf + (w − b)S (ε) + (h−Rf )C (ε)) (µ̇)2m4

mv5,1 =
(
−S (αr) lr

2 + (−S (αr0 − αr) b+ (h−Rr)C (αr0 − αr)) lr
)
(µ̇)2m1 − I1 µ̈1

Aw1,1 =0

Aw2,1 =m4 +m1 +m3

Aw3,1 = ((C (µ+ αr0 − αr)− C (µ+ αr0 )) lr + (−h+Rr)S (µ) + C (µ) b)m1

+ (zfS (µ+ ε) + (Rf − h)S (µ) + (b− w)C (µ))m4

Aw4,1 =−m4C (µ+ ε)

Aw5,1 =− lrm1C (µ+ αr0 − αr)

Ar =


−1 0 −1 0
0 −1 0 −1

Ar3,1 Ar3,2 Ar3,3 Ar3,4

0 0 0 0
0 0 0 0


Ar3,1 = S (µ)x3p − C (µ) z3p

Ar3,2 = C (µ)x3p + S (µ) z3p

Ar3,3 = S (µ)x3h − C (µ) z3h

Ar3,4 = C (µ)x3h + S (µ) z3h

As =


0 0
0 0
0 0
−1 0
0 −1


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At =


−S (µ) −S (µ) −C (µ) −C (µ) C (µ)
−C (µ) −C (µ) S (µ) S (µ) −S (µ)
At3,1 At3,2 At3,3 At3,4 At3,5

C (ε) 0 S (ε) 0 0
0 At5,2 0 At5,4 At5,5


At3,1 = −zfS (ε)− b+ w

At3,2 = C (αr0 ) lr − lr C (αr0 − αr)− b
At3,3 = zfC (ε)− h
At3,4 = S (αr0 ) lr − lr S (αr0 − αr)− h
At3,5 = −S (αr0 ) lr + lr S (αr0 − αr) + h

At5,2 = lr C (αr0 − αr)

At5,4 = lr S (αr0 − αr) +Rr

At5,5 = −lr S (αr0 − αr)−Rr
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